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Streszczenie

Przydział częstotliwości radiowych w sieciach bezprzewodowych jest bardzo
istotnym problemem praktycznym. Znając układ sieci możemy przedstawić ją
w języku teorii grafów. Nadajnikom przypisujemy wierzchołki, które łączymy
krawędziami gdy odpowiadające im nadajniki mogą nawiązać bezpośrednią
łączność. Przydział częstotliwości nadajnikom musi zapewniać brak interferencji
pomiędzy nimi i w prosty sposób tłumaczy się na klasyczny problem kolorowania
grafu.
W klasycznym podejściu do przydziału częstotliwości, każde dwa sąsiadujące

(mogące się ze sobą bezpośrednio komunikować) nadajniki muszą otrzymać różne
częstotliwości. W tej pracy analizujemy pokrewny problem, w którym pozwalamy
na przydział tej samej częstotliwości sąsiadującym wierzchołkom. W konsek-
wencji takiego przydziału tracą one jednak możliwość bezpośredniej komunikacji.
Poszukiwany algorytm przydziału ma, używając jak najmniejszej liczby różnych
częstotliwości, zachować odporność na uszkodzenia sieci (możliwe są zarówno
uszkodzenia nadajników, jak i połączeń między nimi). Te wymagania w natu-
ralny sposób tłumaczą się na terminy związane ze spójnością grafu.
Po wprowadzeniu niezbędnego aparatu matematycznego, przedstawiamy al-

gorytm zachowujący k-spójność sieci przy użyciu k + 1 kolorów dla k < 3. W
głównej części pracy analizujemy problem, w którym do sieci są dynamicznie
dodawane nowe nadajniki, a wcześniej przydzielone częstotliwości nie mogą już
zostać zmienione. Mamy wtedy do czynienia z problemem on-line. Poda-
jemy warunki, które muszą być zachowywane przez każdy algorytm poprawnie
rozwiązujący taki problem.
Następnie opisujemy zachowanie zachłannego algorytmu First-Fit na grafach

spełniających różne dodatkowe ograniczenia. Dowodzimy, że używa on co naj-
wyżej k+1 kolorów do zachowania k-spójności, jeżeli sieć przez cały czas działania
pozostaje k-spójna. Pokazujemy również, że dla grafów o średnicy ograniczonej
przez m algorytm First-Fit używa co najwyżej bm+1

2
c kolorów dla zachowania

spójności.



Introduction

Frequency allocation in the wireless communications networks is an important
task in real-life applications. Given description of the network we can represent
it in the language of graph theory. Transmitters are represented as vertices.
Each pair of vertices that are able to communicate directly with each other is
connected by an edge. Frequency allocation needs to assure that the transmitters
do not interfere with each other. This demand is easily translated to the classical
problem of finding a graph coloring.
The classical approach to the frequency allocation is to give different frequen-

cies to adjacent (able to communicate directly) transmitters. We focus on a
similar problem where the same frequency can be assigned to two adjacent trans-
mitters. As a consequence of such allocation, the transmitters are no longer able
to communicate directly with each other. We search for an algorithm minimiz-
ing the number of frequencies used which preserves the network fault tolerance
(both transmitter and connection failures are possible). This extra requirement
is captured by the notion of graph connectivity.
After introducing some basic graph theoretic notions, we present an algorithm

preserving k-connectivity using k+1 colors for k < 3. In the main part we focus
on the on-line version of the problem where new transmitters can be dynamically
added to the network but once assigned frequencies cannot be changed. We study
the possible scenarios of network growth and we are able to give strict rules that
need to be followed by any algorithm solving the problem.
Later on we examine the behavior of the First-Fit algorithm in several cases

where constructed networks satisfy some extra requirements. We prove that the
First-Fit algorithm uses at most k + 1 colors if the network is k-connected at
every moment. We also prove that, if the network diameter is limited to m, then
the First-Fit algorithm uses at most bm+1

2
c colors to preserve connectivity.



1 Basic notions and facts 1

1 Basic notions and facts

A graph (undirected, loopless) is a pair G = (V,E), where V is a set and E is
a set of 2-element subsets of V . The elements of V are vertices and the elements
of E are edges. The usual way to picture a graph is by drawing a dot for each
vertex and joining two of these dots with a line if the corresponding two vertices
form an edge. |G| denotes the number of vertices.

Figure 1: Sample graph

2

1

3

4

5

Graph G = (V,E) with V = {1, 2, 3, 4, 5}, and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {4, 5}}

A vertex v is incident to an edge e if v ∈ e. The two vertices incident with an
edge are its ends, and an edge joins its ends. An edge {x, y} is usually written
as xy (or yx). Two vertices x, y of G are adjacent, or neighbors, if xy is an edge
of G. The degree d(v) of a vertex v is the number of neighbors of v. A vertex
of degree 0 is isolated. The number δ(G) = min{d(v) : v ∈ V } is the minimum
degree of G. If all vertices of G are pairwise adjacent then G is complete. A
complete graph with n vertices is denoted by Kn.
LetG = (V,E) andG′ = (V ′, E ′) be two graphs. We callG andG′ isomorphic,

and write G ' G′, if there exists a bijection f : V → V ′ such that ∀x,y∈V xy ∈
E ⇔ f(x)f(y) ∈ E ′. We say that G′ is a subgraph of G and write G′ ⊆ G, when
E ′ ⊆ E and V ′ ⊆ V . If G′ ⊆ G and G′ contains all edges xy ∈ E with x, y ∈ V ′,
then G′ is an induced subgraph of G, and G[V ′] := G′. If G′ ⊆ G and V ′ = V
then G′ is a spanning subgraph of G. If U is a set of vertices, we write G−U for
G[V \U ]. Let F be a set of 2-element subsets of V . We write G−F := (V,E \F )
and G+ F := (V,E ∪ F ).
A class of graphs that is closed under isomorphism is called a graph property

and graphs in this class have this property. We call G = (V,E) edge-minimal
with a given graph property, if G itself has this property, but for no xy ∈ E the
graph G− {xy} does.
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Graph G = (V,E) is said to be H-free for a given graph H if no induced
subgraph of G is isomorphic to H.
A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk}

where all the xi are distinct. The vertices x0 and xk are linked by P and are called
its endpoints and the path may be denoted by x0 ∼ xk. The vertices x1, . . . , xk−1
lie on the path P . The number of edges of a path is its length, and a path of
length k is denoted by Pk. Two paths are said to be vertex disjoint, if no vertex
lies on both of them. Two paths are edge disjoint if they do not have a common
edge.
The distance dG(x, y) in G of two vertices x, y is the length of a shortest path

linking x and y. The greatest distance between any two vertices in G is the
diameter of G, denoted by diam(G).
A cycle is a non-empty graph C = (V,E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk, xkx1}k  2

where all the xi are distinct. The number of edges (which is equal to the number
of vertices) of a cycle is its length and the cycle of length k is denoted by Ck.
Given a graph H we call the path P an H-path if P has length greater than

0 and meets H exactly in its endpoints. In particular, the edge of any H-path of
length 1 is never an edge of H. We call the cycle C an H-cycle if C has exactly
one common vertex with H. Given two subsets of vertices A,B we call P an A–B
path if P has one of its endpoints in A and the second one in B, and none of the
vertices from A ∪ B lie on P .
A non-empty graph G = (V,E) is connected if any two vertices in G are

linked by a path in G. Graph is disconnected if it is not connected. G is k-
connected (for k ∈ N) if |G| > k and for every set X ⊆ V with |X| < k graph
G[V \X] is connected. The greatest integer k such that G is k-connected is the
connectivity κ(G) of G. If |G| > l and G−F is connected for every set F ⊆ E of
fewer then l edges, then G is called l-edge-connected. The greatest integer l such
that G is l-edge-connected is the edge-connectivity λ(G) of G. The maximal k-
connected (l-edge-connected) subgraphs of G are called k-connected components
(l-edge-connected components).
Given sets A,B,C ⊆ V we call C an (A,B)-separator if every A–B path in G

contains a vertex from C. Any F ⊆ E such that there is no A–B path in G− F
is called an (A,B)-edge-separator.
The graph shown in Figure 1 is connected and 2-edge-connected but it is not

2-connected. It has two 2-connected components - {1, 2, 3} and {2, 4, 5}.
A coloring of a graph G = (V,E) is a map c : V → S such that c(x) 6= c(y),

whenever xy ∈ E. The elements of S are colors. The smallest k such that G
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has coloring c : V → {1, . . . , k} is the chromatic number of G and is denoted by
χ(G).

Proposition 1 If the graph G is non-empty, then κ(G) ¬ λ(G) ¬ δ(G).

Proposition 2 A graph G is connected if and only if its vertices may be enu-
merated as v1, v2, . . . , vn, so that G[{v1, v2, . . . , vi}] is connected for every i ¬ n.

Proposition 3 A graph is 2-connected if and only if it can be constructed from
a cycle by successively adding H-paths to the graphs H which have already been
constructed.

Proofs of the above propositions can be found for example in [4].

Proposition 4 A graph is 2-edge-connected if and only if it can be constructed
from a cycle by successively adding H-paths and H-cycles to the graphs H =
(VH , EH) which have already been constructed.

Figure 2: Sample construction
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Proof: Clearly, a cycle is 2-edge-connected, and when an H-path or H-cycle is
added to a graph, it stays 2-edge-connected. Suppose that graph G = (V,E) is
2-edge-connected. There are at least 3 vertices in V and G is connected, so E is
non-empty. Let x, y be two vertices connected by an edge. Removing the edge
xy leaves the graph connected, so there exists a path joining vertices x and y in
G−{xy}. This path and the edge xy form a cycle C in G. Let H = (VH , EH) be
a maximal subgraph of G that can be constructed from C by adding H-paths and
H-cycles. Any edge xy ∈ E that connects two vertices in VH is in EH – otherwise
xy would form an H-path, and the graph H would not be maximal. So, H is an
induced subgraph of G. If H 6= G, then there exists a vertex z ∈ G−H. Graph G
is connected so there is a z ∼ x path in G. Let vw be an edge on z ∼ x such that
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v ∈ G−H and w ∈ H. Graph G−{vw} is connected, and there is a path v ∼ x
in it. Let u be the first vertex in H on that path. If u 6= w, then wv and v ∼ u
form an H-path. Otherwise, wv and v ∼ u form a cycle with exactly one vertex
u in H. In both cases, the construction can be extended, which contradicts the
maximality of H. This proves that G = H. �

Theorem 5 (Menger 1927) Let G = (V,E) be a graph and A,B ⊆ V such that
A ∩ B = ∅. The following statements are true:

1. The minimum size of (A,B)-separator in G is equal to the maximum number
of vertex disjoint A–B paths in G.

2. The minimum size of (A,B)-edge-separator in G is equal to the maximum
number of edge disjoint A–B paths in G.

3. G is k-connected if and only if it contains k vertex disjoint paths between
any two vertices.

4. G is l-edge-connected if and only if it contains l edge disjoint paths between
any two vertices.

Several different proofs using various approaches can be found in [4].

2 Minimal connected spanning subgraphs and

an off-line solution

We consider a problem of coloring a k-(edge)-connected spanning subgraph
of a given graph G = (V,E) with as few colors as possible. As the k-(edge)-
connectivity is a monotone graph property (if G has the property itself, then
every supergraph on the same set of vertices does), we assume that G is k-
(edge)-connected. An algorithm solving the problem needs to construct a map
c : V → S such that there exists a graph H ⊆ G that is a spanning subgraph of
G, it is k-(edge)-connected, and c is a coloring of H. Graph H does not have to
be computed explicitly because having a map c it is easy to compute an edge-
maximal graph H ′ for which c is a vertex coloring. Edges of H ′ are those edges
of G which join vertices with different colors in c. H has to be a subgraph of H ′

and from the monotonicity of k-(edge)-connectivity, H ′ is k-(edge)-connected.
The first approach to solving the problem is to divide it into two subproblems:

finding a k-(edge)-connected spanning subgraph H and constructing a coloring
of H. The H we would seek for should minimize the value of χ(H). Obtaining
χ(H) for a given graph H is an NP -complete problem so we have to look for
other criteria for finding a subgraph H. Clearly, the coloring of a supergraph
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Figure 3: A graph with a coloring of a connected spanning subgraph
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This graph has been colored using 2-colors (circles and squares). A connected
spanning subgraph, for which the coloring is proper, exists. The edges of the

subgraph are drawn with thicker lines.

induces the coloring of any of its subgraphs, and H ⊆ H ′ ⇒ χ(H) ¬ χ(H ′). This
leads to a search for edge-minimal k-(edge)-connected spanning subgraphs of G.
Finding any edge-minimal k-(edge)-connected subgraph of a given graph G

is an easy task. Deciding whether a graph is k-edge-connected may be done in
polynomial time for every k. This leads to a simple algorithm that removes edges
from G one by one if the resulting graph is still k-(edge)-connected. More subtle
(and achieving better time complexities) algorithms can be found in [9] and [10].
The search for edge-minimal k-(edge)-connected subgraphs satisfying other

desirable properties is usually NP -complete. For example, finding a k-(edge)-
connected spanning subgraph minimizing the number of edges is NP -complete
for k  2 as described in [8]. The approximation algorithm for this problem
is given in [3]. Finding a k-(edge)-connected spanning subgraph minimizing the
maximal-degree is NP -complete [8]. For k = 1 the problem has an approximation
to within one from optimal [7]. Approximation algorithms are also known for
k  2 [5].
If we were able to give a constant upper-bound on the chromatic number

of the edge-minimal k-(edge)-connected subgraphs, we could use an algorithm
which does not search for any special subgraphs and uses any of the edge-minimal
k-(edge)-connected spanning subgraphs. Such an algorithm would achieve an
approximation within constant to the optimal solution. If such an upper-bound
does exist, it is at least k + 1 (as Kk+1 is edge-minimal k-(edge)-connected and
χ(Kk+1) = k + 1). We will now prove that such an upper-bound exists for k ¬ 2
and equals k + 1.

Proposition 6 Every edge-minimal connected graph is 2-colorable.

Proof: Given a graph G = (V,E) that is edge-minimal connected from Proposi-
tion 2 we obtain that V = {v1, v2, . . . , vn} and G[{v1, v2, . . . , vi}] is connected for
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every i ¬ n. There is exactly one edge from vi to {v1, v2, . . . , vi−1}. If there were
two such edges, one could be removed from G and the resulting graph would also
be connected, contradicting the edge-minimality of G. This leads to a simple 2-
coloring algorithm for G. We set c(v1) := 1 and give colors to other vertices in the
increasing order. For each 2 ¬ i ¬ n, the only neighbor of vi in {v1, v2, . . . , vi−1}
has already been given a color, and we can give the other one to vi. �

Proposition 7 Every edge-minimal 2-(edge)-connected graph is 3-colorable.

Proof: Propositions 3 and 4 give a inductive characterization of the 2-(edge)-
connected graphs. In order to obtain 2-(edge)-connected, we can strengthen the
requirements for H-paths added in these construction.
Graph G is edge-minimal 2-(edge)-connected if it can be obtained by the

construction as in Propositions 3, 4 in which P1 was never used as anH-path. If P1
was used in the construction, we could omit this step and finish the construction.
The resulting graph would also be 2-(edge)-connected and it would be a spanning
subgraph of G, contradicting the edge-minimality.
We can 3-color G using the inductive characterization (without H-paths of

length 1):

1. The starting cycle is 3-colorable.

2. When an H-path P of length greater than 1 is added to graph H then colors
of its endpoints x1 and x2 are already set. Suppose that both of these colors
are from {1, 2}. We can assign color 3 to any vertex y inside P , and give
alternating colors 1 and 2 on the paths x1 ∼ y and x2 ∼ y starting from x1
and x2 respectively.

3. When an H-cycle is added only one vertex is colored, and the rest of the
cycle is a path which can be colored using the remaining two colors.

�

Theorem 8 A (k+1)-coloring of a k-(edge)-connected spanning subgraph can be
efficiently computed for k ¬ 2.

Proof: Given a graphG, its edge-minimal k-(edge)-connected spanning subgraph
can be computed as discussed earlier. Having this subgraph and following its
construction (which can be easily obtained in quadratic time), the coloring can
be established using the techniques from Proposition 6 and 7. �
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3 On-line version of the problem

The on-line coloring of a graph can be viewed as a game between two players:
Spoiler and Painter. The game is divided into rounds. In the first round Spoiler
presents a graph and Painter gives a color to each vertex in this graph. In each
following round Spoiler adds a new vertex x to the graph already constructed
and describes all edges joining x and vertices from the previous rounds. Painter
responds by giving x a color. Once a Painter gives a color to x, it can never be
changed. If an edge between x and another vertex from the graph is not described
by Spoiler, it can never appear in the future. Of course, Spoiler can connect x
with vertices added later on.
In the classical on-line graph coloring problem, the goal of the Painter is to

have a correct coloring of the graph after every round, and to use as few colors
as possible. Painter’s strategy is usually measured by the competitivity ratio i.e.
the number of colors he used divided by the chromatic number of the graph. In
the general setting, there is no strategy for Painter that would guarantee a finite
competitive ratio for all possible games. However, if some restrictions are imposed
on the graphs that may be constructed by Spoiler, it often leads to games where
Painter has an algorithm achieving a finite competitive ratio. Examples of such
games can be found in [2] or [11].
In our problem, Painter’s task is to give colors to the vertices in such a manner,

that whenever the resulting graph is k-(edge)-connected, there is a k-(edge)-
connected spanning subgraph, which is correctly colored by Painter’s coloring.
The number k, and the kind of connectivity (vertex or edge) are parts of the
problem specification. We will say that the task of the game is to maintain k-
(edge)-connectivity, or simply call the game as k-(edge)-connectivity game. It is
easy to check that playing for all k simultaneously is equivalent to the classical
problem of the on-line coloring.
The Spoiler-Painter game may be viewed as follows: Spoiler builds a graph

as in the classical problem, but Painter constructs coloring of his own copy of
the graph. Whenever Spoiler adds an edge to the graph, Painter decides whether
to add it or not to his copy of the graph. Whenever Spoiler’s graph is k-(edge)-
connected, Painter’s copy must have the same property. Even if Painter does not
use this approach in his algorithm, we can compute the edge-maximal subgraph,
for which his coloring is proper. We can treat this subgraph as a Painter’s copy
as described above.
The first trivial algorithm solving the on-line problem is the classical on-line

coloring algorithm, which colors vertices in such a manner that all edges from
Spoiler’s graph are present in Painter’s graph.
If Spoiler is able to play in such a way that his graph is k-(edge)-connected,

and Painter’s copy is not, then Painter is instantly defeated. We want to construct
an algorithm for Painter that could not be defeated in this way. Such Painter’s
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Figure 4: Sample game
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After 6 rounds Painter used 3 colors and maintained a connected spanning
subgraph.

algorithm is invincible. We will give some rules which need to be respected by
such an algorithm. Having these we will define an algorithm that is invincible,
and is different from the trivial one (for which invincibility is easy to check).

Lemma 9 Assume that the task of the game is to maintain k-connectivity and
Painter is invincible. If a set K of 1 ¬ i < k vertices is an (A,B)-separator in
Painter’s graph after Painter’s move, then K is an (A,B)-separator in Spoiler’s
graph as well.

Proof: Suppose that at some point of the game, after Painter’s move the Spoiler’s
graph is G = (V,E), Painter’s copy is G′ = (V,E ′) ⊂ G, and K ⊆ V , |K| = i is
an (A,B)-separator in G′, but it is not in G. We will prove that Spoiler has a
strategy to build a graph that will be k-connected, and Painter will not be able
to keep his copy k-connected.
K is an (A,B)-separator - this means that G′−K is disconnected, and A and

B are subsets of different components. Let X, Y be two disjoint sets covering
V \ K such that A ⊆ X, B ⊆ Y , and there are no paths in G′ from X to Y .
Spoiler’s strategy is as follows and is based on the fact that G−K is connected:

1. Add k new vertices X ′, which are adjacent to all vertices in X ∪X ′ ∪K.

2. Add k new vertices Y ′, which are adjacent to all vertices in Y ∪ Y ′ ∪K.

3. Add k − i new vertices K ′, which are adjacent to all vertices in X ′ ∪ Y ′.

Clearly Painter’s copy cannot be k-connected after this construction. Removal
of K ∪K ′, which is of size k − 1, leaves his graph disconnected.
Spoiler’s graph, on the contrary, is k-connected. We will prove this by using

Menger’s Theorem 5. We need to construct k vertex-disjoint paths between any
two vertices.
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Figure 5: Spoiler’s strategy
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• For any two vertices in X ∪X ′ ∪K ∪ K ′ the paths are easily constructed
by using k vertices from X ′ which are connected to all vertices in the set.

• The same holds for Y ∪ Y ′ ∪K ∪K ′.

• The only case left for discussion is one vertex in X ∪ X ′ and the other
in Y ∪ Y ′. In this case, one path is obtained from the fact that G − K
is connected, and remaining k − 1 can be constructed using vertices from
K ∪K ′.

After applying this strategy, Painter is defeated. This contradicts the invin-
cibility of Painter’s algorithm. �

Lemma 10 Assume that the task of the game is to maintain l-edge-connectivity
and Painter is invincible. If a set L of 1 ¬ i < l edges is an (A,B)-separator in
Painter’s graph after Painter’s move, then L is an (A,B)-separator in Spoiler’s
graph as well.

Proof: This proof is very similar to the previous one. Let L be an i-element
(A,B)-separator in G′. G′ − L is disconnected and A and B are subsets of
different components. Let X, Y be two disjoint sets covering V such that A ⊆ X,
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B ⊆ Y and there are no paths in G′ from X to Y . Spoiler’s strategy is now as
follow:

1. Add l new vertices X ′, which are adjacent to all vertices in X ∪X ′.

2. Add l new vertices Y ′, which are adjacent to all vertices in Y ∪ Y ′.

3. Add a vertex z, which is adjacent to all vertices in X ∪X ′ and l− i vertices
in Y ′.

Again, Painter is unable to obtain l-edge-connectivity. The set of edges be-
tween z and Y ′, together with edges from L, form an (l − 1)-element (A,B)-
separator. The l-edge-connectivity of Spoiler’s graph is easy to check. �

Corollary 11 If the task of the game is to maintain k-connectivity (or l-edge-
connectivity) and Painter is invincible, then for each 1 ¬ i < k (1 ¬ i < l) and i
vertex disjoint (edge disjoint) A–B paths in Spoiler’s graph, there are i such A–B
paths in Painter’s graph.

Proof: The proof using Menger’s Theorem 5 and Lemmas 9 and 10 is straight-
forward. �

This corollary gives us strong bounds on how Painter may play, and allows
us to analyze his possible strategies. We are also able to introduce the first on-
line algorithm trying to solve the problem. The algorithm colors vertices with
natural numbers and colors the newly added vertex with the smallest number such
that Corollary 11 is satisfied. We will call this algorithm First-Fit Algorithm or
FFA for short. We will analyze FFA both in general setting and when various
restrictions are imposed.

Theorem 12 FFA is invincible.

Proof: What we need to prove is that at each step, when Spoiler adds a new
vertex x, the color given to x by FFA preserves the property imposed on G′ by
Corollary 11.
Suppose that the task of the game is to maintain k-connectivity. Let P be a

set of 1 ¬ i < k vertex disjoint paths in G + x having one of the endpoints in A
and the second one in B. In the proof A and B should be treated as multisets of
endpoints of the paths. If x does not lie on any path from P , then the same set
P is present in G and the thesis holds by induction.
If x is an endpoint of one of the paths Px ∈ P , then without loss of generality,

we can suppose that x ∈ A and xB is the neighbor of x in Px. If xB /∈ B, we
can substitute Px in P by Px − x. We obtain an i element set of paths between
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A \ {x} ∪ {xB} and B in the graph G. Painter using FFA has maintained a
corresponding set of i paths in his graph and he can extend the path ending
in xB with the edge xBx. If xB ∈ B the situation is even simpler – adding
the edge xBx to the Painter’s graph solves both cases. This requires giving x a
color different from the color of xB, but enables Painter to continue with FFA
algorithm.
If x is not an endpoint of any of the paths in P , then it lies on Px ∈ P , a ∈ A

and b ∈ B are the endpoints of Px = a ∼ x ∼ b. As proved earlier FFA can
maintain i paths between A \ {a} ∪ {x} and B (as well as between B \ {b} ∪ {x}
and A). Using Menger’s Theorem 5 we obtain that there is no set with less then
i elements separating:

1. A from B in G+ x.

2. A \ {a} ∪ {x} from B in G′ + x.

3. B \ {b} ∪ {x} from A in G′ + x.

We need to prove that there is no such a set separating A from B in G′ + x.
Suppose that there is such a set C. If x /∈ C, then C separates 2 or 3, so x ∈ C.
This means that C \ {x}, having i − 2 elements, was separating A \ {a} from
B \ {b} in G′, which is impossible because Corollary 11 was satisfied for G and
G′ and P \ {Px} was a set of i− 1 paths between A \ {a} and B \ {b} in G.
The same proof with minor changes works for l-edge-connectivity game. �

3.1 Graph is k-(edge)-connected during the whole game

If no restrictions are applied to the game, Spoiler has a strategy to force
Painter to use any number of colors to maintain connectivity of a 2-colorable
graph. This strategy will be discussed later on. This is why we introduce limita-
tions on how Spoiler is allowed to play. The first, natural restriction is to force
Spoiler to start from Kk+1 and keep the graph k-(edge)-connected all the time.
We prove a simple fact which will allow us to examine the behavior of FFA

in this setting.

Lemma 13 Given k-connected graph G and a new vertex x with at least k neigh-
bors in G, graph G+ x is k-connected.

Proof: Let X be a set of k different neighbors of x in G. To prove k-connectivity
of G + x, we will show that removing any k − 1 vertices K leaves the graph
connected. If x was one of the removed vertices, then the resulting graph is G
with k − 2 vertices removed, and it is connected because G was k-connected.
Otherwise the resulting graph is (G − K) + x. G was k-connected so G − K is
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connected and because |K| < |X| there is at least one vertex y both in X and
outside of K. The graph (G−K) + x is connected because x is linked with y. �

Corollary 14 FFA uses exactly k+1 colors, when Spoiler starts the game with
Kk+1 and keeps the graph k-(edge)-connected during the whole game.

Proof: In this setting there is no difference between the connectivity game and
the edge-connectivity game. Even if the task of the game is to maintain k-edge-
connectivity, the graph stays k-connected all the time. This can be proved using
induction on the number of rounds in the game. Clearly, Kk+1 is k-connected,
and when Spoiler adds a vertex to the graph, he is obliged to keep the graph
k-edge-connected. This means that the new vertex needs to have the degree at
least k, and using Lemma 13 we obtain k-connectivity of the resulting graph.
FFA colors the starting graph Kk+1 using k+1 colors and when a new vertex

is added, then the algorithm uses the smallest number, such that the new vertex
has k neighbors with color different from the chosen one. Clearly, FFA will never
use color k + 2, because k neighbors can have only k different colors. �

This result shows that the restriction chosen significantly limits Spoiler. In
fact, he is not able to build all possible k-edge-connected graphs. Even a C4
cannot be achieved in a 2-connectivity game.

3.2 On-line coloring of a connected subgraph

We will now discuss the connectivity game without any restrictions on how
Spoiler is supposed to play. Amazingly when analyzing this setting we will also
find characterization of some interesting restrictions of the game.
Firstly, we show a strategy for Spoiler that forces FFA algorithm to use any

number of colors when Spoiler’s graph is 2-colorable. This strategy is constructed
recursively - G1 is a graph with one vertex, and in order to construct a graph Gk
we construct vertex disjoint graphs G1, G2, . . .Gk−1 without any edges between
them, and then add a new vertex adjacent to vertex colored to i in each Gi. This
construction is shown in Figure 6.
Clearly, FFA gives color k to the last vertex in Gk. No lower color i can be

used because connectivity between the new vertex and Gi would be lost.
The same recursive strategy may be used against any other Painter’s algo-

rithm. To force Painter to use k different colors, Spoiler constructs k − 1 graphs
with no edges between them. The construction of the i-th graph is finished when
Painter introduces the i-th color. To finish the construction, Spoiler adds a new
vertex adjacent to k − 1 vertices with different colors placed in different compo-
nents. Painter has to introduce new color for this vertex. Any graph obtained by
this construction will be denoted by G∗k.
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Figure 6: Strategy Gk
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Both Gk and any possible G∗k are edge-minimal connected. Removing any of
the edges at any step of the construction would result in a disconnected graph.
Using Proposition 6, we obtain the 2-colorability of Gk and G∗k.
We have constructed a strategy for Spoiler to play against any Painter’s algo-

rithm and to force him to use k colors. Next lemma shows that there is no other
strategy that forces FFA to use k colors.

Lemma 15 In a connectivity game, for each k  2, if Spoiler’s graph is Gk-free
and Painter applies FFA, then Painter uses less than k colors.

Proof: We prove this by induction on k. For k = 2 the thesis is trivial. Suppose
that FFA has used color k for a vertex xk. This means that in Painter’s copy
of the graph, for each i = 1, 2, . . . , k − 1 there is a vertex xi colored i that
is adjacent to xk. Otherwise xk would be given the missing color. Moreover,
we can select xi’s so that they all lie in different components. If one of the
colors was not represented in this way, FFA would use this color for xk and all
connectivities would be satisfied. By induction, there is an induced subgraph Gi
in the component of xi, so these Gi together with xk form Gk. �

An interesting class of possible restrictions of the game is obtained by for-
bidding some structures to appear in the Spoiler’s graph. When the graph H is
forbidden, then we will call the game to be H-free. For example, we may analyze
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a game in which Spoiler’s graphs have to be K3-free all the time. This is K3-free
connectivity game.
The construction of Gk and Lemma 15 give us a simple method of checking

how well FFA is doing in an H-free game. The only thing that needs to be
checked is for which k graphs Gk are H-free. When H = K3 is discussed, it is
easy to check that for all k ∈ N the graph Gk is K3-free. This leads to a corollary
that Spoiler can force FFA to use any number of colors in a K3-free connectivity
game. Moreover, any possible G∗k is K3-free, so any Painter’s algorithm can be
forced to use any number of colors as well.
Pm-free games are especially interesting for us. For example, graphs with

diameter limited up to m− 1 belong to the class of Pm-free graphs.

Lemma 16 FFA uses at most bm+1
2
c colors in a Pm-free connectivity game.

Proof: We will prove that Gk has an induced subgraph isomorphic to P2k−3. Let
us introduce two sequences: pi is the length of the longest induced path in Gi;
hi is the length of the longest induced path in Gi having one of its endpoints at
the vertex colored i by FFA. The following recursive formulas emerge almost
automatically from the construction of Gk.

h1 = 0

p1 = 0

p2 = 1

hi+1 = max(h1, h2, . . . , hi) + 1

pi+2 = max(p1, p2, . . . , pi+1, h1 + h2 + 2, h1 + h3 + 2, . . . , hi + hi+1 + 2)

which are easy to solve:

hi+1 = hi + 1 = i

pi+2 = hi + hi+1 + 2 = 2 · i + 1

So pi = 2 · i − 3 for i  2. This proves that Pm-free graphs are Gbm+3
2
c-free and

by Lemma 15 FFA uses at most bm+1
2
c colors to color any of them. �

Lemma 17 Spoiler can force every Painter’s algorithm to use bm+1
2
c colors in a

Pm-free connectivity game.
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Proof: Using the same approach as in the previous proof, we can inductively
show that for i  2,

hi(G∗i ) ¬ i− 1

p(G∗i ) ¬ 2 · i− 3; i  2

where hi(G∗i ) is the length of the longest induced path in G
∗
i having one of its

endpoints in the vertex colored i, and p(G) is the length of the longest path in
G.
Having these inequalities, we can state that the construction of any G∗

bm+1
2
c
is

possible in the class of Pm-free graphs. This proves that Spoiler can force Painter
who uses any valid algorithm to use at least bm+1

2
c colors in a Pm-free connectivity

game. �

Lemmas 16 and 17 show that FFA is an optimal algorithm in Pm-free con-
nectivity games.

Further Research

It seems, that a result similar to Theorem 8 may be true for every k. For k = 3
there is an inductive characterization of 3-connected graphs by Tutte [4], however
it is not that easy to use. There is no characterization known for k > 3. Thus,
proving this conjecture would require techniques different from the one used in
the proof of Propositions 6 and 7.
FFA’s behavior has been thoroughly examined only for the connectivity

game. In a 2-edge-connectivity game it is still quite easy to follow this algo-
rithm, but for higher k it is troublesome.

Thanks

I would like to thank my friends and colleagues from the „Underground Sem-
inar” for inspiring my research and for introducing me to the techniques which
occurred to be crucial in my work.
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